二項係数の和とフィボナッチ
\sum_i \binom{N-i}{i} = F_N
where F_0 = F_1 = 1, F_n = F_{n-2} + F_{n-1}
F_N = \sum_{i\ge 0} \binom{N-i}{i} = 1 + \sum_{i\ge 1} \binom{N-i}{i}
= 1 + \sum_{i \ge 1} \left(\binom{N-i - 1}{i} + \binom{N-i - 1}{i-1}\right)
= 1 + \sum_{i \ge 1} \binom{N-i - 1}{i} + \sum_{i \ge 1} \binom{N-i - 1}{i-1}
= 1 + \sum_{i \ge 1} \binom{N-i - 1}{i} + \sum_{j \ge 0} \binom{N - j - 2}{j}
= \sum_{i \ge 0} \binom{N-i - 1}{i} + \sum_{j \ge 0} \binom{N - j - 2}{j}
= \sum_{i \ge 0} \binom{(N-1) - i}{i} + \sum_{i \ge 0} \binom{(N-2) - i}{i}
= F_{N-1} + F_{N-2}