NISHIO Hirokazu
[Translate]
arc021_3
C - 増築王高橋君
考えたこと
Kが小さければコストの安い方から貪欲に取っていけば良い、しかしKは10^8
「安い方から」ということは、選択した中で最も高いxが存在する
各建物ごとにx以下で可能な増築は定数オーダーで求められる
なので「x以下で可能な増築の総量f(x)」は10^5オーダーで求まる
f(x)がKになる最小のxを二分探索でまとめれば良い
最大化を二分探索で
。今回は最小化だけど。
公式解説OK
Tweet
Related Pages
最大化を二分探索で
→
atcoderエントリーポイント
×
atcoder失敗リスト
×
二分探索チェックリスト
×
列に対して決まる値→列の区間でdp
×
最大化を二分探索で
×
実数に対する大小判定
×
値域と定義域の交換
×
最小カットに帰着
×
競技プログラミングで解法を思いつくための典型的な考え方
×
問題変換
→
AtCoderEntrypoint
→
最大化を二分探索で
→
ARC031D
PAST5M
→
帰着する力
×
小さい制約の問題
×
nが8前後の制約
×
nが10~20前後の制約
×
n_が_30~40前後の制約
×
n_が_50前後の制約
×
n_が_300~500前後の制約
×
n_が_1000_前後の制約
×
小さな定数に注目
×
変数を一つ固定する
×
3つのものの真ん中を固定
×
行列の半分
×
xとyにわける
×
操作の不変量に注目
×
偶奇に注目
×
偶奇で場合わけ
×
操作の順番によらない
×
時間軸反転
×
元に戻せる操作
×
左右から累積積
×
等差数列の加算は差に注目
×
区間反転の合成はxor
×
grundy数
×
余事象を引く
×
k番目の数を二分探索
×
xorは繰り上がりのない足し算
×
xorは桁ごとに分割可能
×
45度回転
×
差の最小化は中央値
×
代表的なグラフで考察
×
木は二部グラフ
×
木の直径
×
最大化を二分探索で
×
選択肢が少ない方から貪欲
×
二次元座標を二部グラフにする
×
順序を有向グラフにする
×
凸関数の極値は三分探索
×
単調増加ならしゃくとり法
×
等比数列は剰余に注目
×
n進数は剰余に注目
×
括弧列は上り下り
×
競技プログラミングで解法を思いつくための典型的な考え方
×
keyence2020_d
×
abc152_f
×
agc026_c
×
arc060_a
×
joi2008ho_c
×
abc034d
×
abc138e
×
ABC023D
→
競技プログラミングで解法を思いつくための典型的な考え方
→
競技プログラミングで解法を思いつくための典型的な考え方
×
最大値の最小化
×
最大化を二分探索で
×
maxの不等号は不等号のand
→
ABC023D
→
最大化を二分探索で
×
最小値の最大化
×
max
×
不等号
×
and
×
問題変換
→
maxの不等号は不等号のand
"
Engineer's way of creating knowledge
" the English version of my book is now available on
[Engineer's way of creating knowledge]
(C)NISHIO Hirokazu / Converted from
[Scrapbox]
at
11/23/2025, 5:28:03 PM
[Edit]