NISHIO Hirokazu[Translate]
Visualization of Nicomachus's Theorem
>Rainmaker1973 Visualization of Nicomachus's Theorem
> The sum of the first n cubes is the square of the sum of the first nth number, or
> 1³ + 2³ + 3³ + ... + n³ = (1 + 2 + 3 + ... + n)²
> 最初の n 個の立方体の合計は、最初の n 番目の数値の合計の 2 乗です。

>TrueCrimeNFT A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. The nth colored region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the nth region is n times n x n.
> 一辺の長さが三角形の正方形は、正方形と半正方形に分割し、面積が立方体になります。n番目の色付き領域は、寸法n×nのn個の正方形を示しています(長方形は1均等に分割された正方形です)ため、n番目の領域の面積はn×nです。
>


"Engineer's way of creating knowledge" the English version of my book is now available on [Engineer's way of creating knowledge]

(C)NISHIO Hirokazu / Converted from [Scrapbox] at [Edit]