k \equiv 0 \pmod{m}, k \equiv -1 \pmod{r} の時 k = amとすると
am \equiv -1 \pmod{r},
a \equiv -1 \cdot m^{-1} \pmod{r}
というわけで k = -1 * inv_mod(m, r) * m で良いから
CRT version
python
def solve(N):
from math import gcd
if N == 1:
return 1
ret = N - 1
for n in all_divisor(2 * N, includeN=False):
m = (2 * N) // n
if gcd(m, n) != 1:
continue
k = crt(0, n, -1, m)
if k < ret:
ret = k
return ret
non-CRT version
python
def solve(N):
if N == 1:
return 1
factors = factor(2 * N)
num_factors = len(factors)
if num_factors == 1:
return N - 1
factors = [p ** factors[p] for p in factors]
ret = N - 1
for i in range(2 ** num_factors - 1):
prod = 1
j = 0
while i:
if i & 1:
prod *= factors[j]
j += 1
i >>= 1
rest = (2 * N) // prod
k = (-pow(prod, -1, rest) * prod) % (2 * N)
if k < ret:
ret = k
return ret