ARC110D_FPS
F_{i}(x) = \sum_{k=0}^{\infty} \binom{k}{A_{i}} x^{k}
G(x) = \prod_{i=1}^{N} F_{i}(x)
\binom{A+i}{A} = [x^i] \sum_n \binom{A+n}{A}x^n = [x^i]\frac{1}{(1-x)^{A+1}}
i < 0の時 \binom{A+i}{A} = 0 であることから F_{i}(x) = \sum_{k=0}^{\infty} \binom{k}{A_{i}} x^{k} = \frac{x^{A_i}}{(1-x)^{A_i+1}}
S := \sum A_i
G(x) = \prod_{i=1}^{N} F_{i}(x) = \frac{x^S}{(1-x)^{S+N}}
\displaystyle \sum_{i=0}^{k} [x^{i}]F = [x^{k}] \frac{1}{1-x}F
X = \sum_{i=}^{M} [x^{i}]G = [x^{M}] \frac{1}{1-x}G = [x^{M}]\frac{x^S}{(1-x)^{S+N+1}}
= [x^{M-S}]\frac{1}{(1-x)^{S+N+1}}
[x^B]\frac{1}{(1-x)^{A}} = \binom{A+B-1}{A-1}
[x^{M-S}]\frac{1}{(1-x)^{S+N+1}} = \binom{S+N+1+M-S-1}{S+N} = \binom{N+M}{S+N}
参考
ほぼこれの流れ